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Abstract

The original Internet was envisioned to become an open and distributed
network that was scalable and fair, allowing access to data and services
without surveillance or security concerns. However, in recent years, the
network has become increasingly centralized and controlled by big busi-
nesses running huge data centers. This centralization has given big entities
and businesses unprecedented control of the traffic and data of the net-
work. As a remedy to this deteriorating trend, we suggest the inception of
a decentralized and consensus-driven segmented blockchain network based
on a striped storage solution. The protocol allows for a completely decen-
tralized and secure blockchain-based Internet where anybody, including
private persons, can host an income-generating service node, aiding the
network with compute cycles, bandwidth and storage space. To allow for
complete utilization of the network, an access layer is provided, allowing
for the development of protocols, services and infrastructure.

1 Introduction

During the last decade, the use of cryptocurrencies has increased dramatically
with upward of 260 000 businesses now accepting cryptocurrency payments in
Japan alone [11]. Governments have enforced and expanded laws and policies
in order to allow and promote continuous adoption [14]. While the Internet
and the world moves towards an increasingly digitalized [23] and anonymized
payment system pioneered by the Bitcoin network [19] and its blockchain, the
surveillance and control of the underlying Internet is continuously increasing
on an annual basis, with servers and infrastructure moving into ever growing
data centers controlled by big businesses. Private data is stored, controlled and
distributed by these businesses - making the data centrally stored and inherently
vulnerable. The public is, often unknowingly, placing private information and
trust into these businesses, relying on them to store and keep the information
and data safe and permanently secured. Not only does this control enable rogue
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entities to pressure businesses to release and disclose private information, but
it also raises concerns related to the safe storage and longevity of the data
itself [18, 3]. A partial solution is to use data encryption to secure and hide
the information from prying eyes. This makes the data private, but the actual
storage is in no way secured or guarantees longevity.

What is needed is a data storage solution that enables anybody to store
and transmit data on the network in a distributed, secure and globally scalable
way. If the network is designed to only allow individual nodes to have access
to a small shard of any stored data, the network becomes more resilient against
eavesdropping and attacks. If small shards are stored in different locations
with redundancy employed in the form of striping, it creates a storage network
where the data is spread out, making it completely resistant to local outages
and external control.

The continuous centralization of the current Internet also causes congestion
in the network, with many routes becoming almost completely obstructed dur-
ing peak hours. A distributed network that globally stores data allows nodes
to load balance the traffic of payloads and transmit data in many directions
simultaneously.

Many cryptocurrency projects are maintained by commercial businesses that
require steady funding and strict internal control of their underlying intellectual
property. However, like with other infrastructure-providing digital solutions,
historical data shows that open solutions are favoured for long-term sustainable
adoption [33, 32].

To decrease central control and increase decentralization, the network em-
ploys decentralized sporks that allow service nodes to vote on changes and in-
troduce modifications to the protocol of the network. All the properties of the
protocol are either controlled or managed by the service nodes. Budget propos-
als, governance funding and service node collateral should all be controlled or
managed in a decentralized fashion by the service node network and enforced
by the board of The Unigrid Foundation.

2 Gridnodes

The former Darkcoin project originally developed the concept of masternodes
aiding and providing the network with specific services [8]. The Unigrid network
takes this approach and develops it further into service nodes called gridnodes.
These specialized gridnodes have the purpose of providing the network with
storage space, communication channels and compute cycles. Ordinary network
nodes and wallets communicating on the Unigrid network can send shards of
work to the gridnodes. Like transactions, sending these shards of work costs a
certain amount of units or fermis.

2.1 Gridnode sporks

Historically, network sporks have been controlled from a central controller and
signed using spork keys in the possession of the project maintainers [6]. While
sporks are a useful feature that allows the network to toggle new network rules
and control behaviour of the protocol, the fact that project maintainers can
freely manipulate these sporks makes the solution centralized. If the spork key
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gets leaked or the maintainers are pressured into manipulating the network in a
undesirable way, this creates a big security risk that can threaten the long-term
viability of the network.

Unigrid completely ameliorates the spork system by introducing the concept
of gridnode sporks. Gridnode sporks are either categorized as governed or un-
governed. While their concept is the same and the keys for signing these sporks
are in the possession of The Unigrid Foundation, a governed gridnode spork can
only be modified after the gridnodes on the network reach consensus and accept
the change. Ungoverned gridnode sporks, on the other hand, can be modified at
will and are used by the developers of the system in order to tweak its behaviour
for either performance considerations or testing. Gridnode sporks also extend
the definition of traditional sporks slightly. While normal sporks are defined as
a single 64 bit number, gridnode sporks have several fields while also defining a
data portion for storing an arbitrary amount of data:

0 63 127

timestamp data size delta size

previous timestamp reserved

flags type reserved

spork data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh


data portion

spork delta data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh


delta portion

The delta data stored in the gridnode spork either contains the previous delta
encoding, as described in section 6.4, or the raw representation of the previous
value of the spork. The flags section of the spork controls if the data stored
in the delta portion is one or the other. Storing the previous timestamp and
data in in this way allows the network to identify at what time a value was
applied and, when requested, undo any recent change to a gridnode spork. It
also allows the network to undo a recent change to a governed gridnode spork
in the event that the change isn’t accepted by the network. Furthermore, the
gridnode sporks defined in the protocol of the network are not static. As the
network changes and evolves, governed and ungoverned gridnode sporks can be
continuously introduced and purged from the protocol in order to satisfy any
changing requirements. Gridnode sporks can only be added or removed to or
from the protocol with new releases of the Unigrid daemon.
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2.1.1 Governed sporks

Governed gridnode sporks can modify the behaviour of the network to a greater
extent than ungoverned gridnode sporks and are therefore under strict network
control and require consensus by the gridnodes on the network before a change
to them is accepted. The network defines a number of governed gridnode sporks:

• APPLY GRACE PERIOD — Grace period defining the amount of
time, in seconds, The Unigrid Foundation has to undo newly applied gov-
erned gridnode sporks. This grace period is used by the network whenever
the ungoverned gridnode spork ROLLBACK SPORKS is changed and al-
lows the nodes on the network to verify which sporks should be reset back
to their previous value.

0 31 63

grace period reserved

• SHARD GROUP REORGANIZE PERIOD INTERVAL — De-
fines the minimum and maximum period, in seconds, that the ungoverned
gridnode spork SHARD GROUP REORGANIZE PERIOD can be set to.

0 31 63

minimum period maximum period

• SHARD GROUP SIZE INTERVAL — Controls the minimum and
maximum value of the ungoverned gridnode spork SHARD GROUP SIZE.

0 15 31 63

minimum size maximum size reserved

2.1.2 Ungoverned sporks

Several ungoverned gridnode sporks are planned. These can be continuously
changed by The Unigrid Foundation in order to fine-tune the network and mod-
ify its behaviour.

• BLOCK REQUIRED COMPRESSION RATIO — Sets the required
compression ratio, as defined between 0 to 1. This defines how much com-
pression is needed for the data portion of new blocks to be considered for
storage at a gridnode as a compressed block.

0 31 63

required ratio reserved

This only governs new blocks arriving at gridnodes. If a block with an
insufficient compression ratio is detected, the gridnode should reject it.
To enforce this rule, gridnodes will randomly check blocks and heavily
penalize nodes that break it by giving them a ban score, as describe in
section 2.3.4.

BLOCK VESTED ADDRESSES — This spork defines a list of vested
addresses and a single timestamp specifying when the vesting should be-
gin. This is a spork used by The Unigrid Foundation to lock and manage
sales of the Unigrid token. It is simply a list of addresses concatenated
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with the locked amount in each address together with the vesting period,
the lock length and the creation timestamp. As the vesting schedule of
the sale rounds proceeds, the network will allow for the continuous release
of tokens held by these addresses.
0 31 63

timestamp vesting start reserved

address data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The timestamp of this spork is initially empty, once the time has been set
once, the daemon will never accept any additional changes to this spork.
This limitation is put in place in order to make sure that this spork can
not be abused in future versions of the daemon.

• ROLLBACK SPORKS — When set to true, triggers a network-wide
undo signal that rolls back recent spork changes.
0 1 63

reserved

Any gridnode spork changed within the time of the grace period as defined
by APPLY GRACE PERIOD will be rolled back and assigned the previ-
ous timestamp and value as defined by previous timestamp and previous
value. After the rollback, previous timestamp and previous value are set
to NULL and zero.

• SHARD GROUP REORGANIZE PERIOD — Controls the reor-
ganize period of shard groups. This is the interval at which a shard group
should reorganize and compact the blockchain. This allows it to remove
stale or in some other way invalid blocks from the chain.
0 31 63

period reserved

If the size is set to a value outside the allowed interval, the value is clamped
accordingly to keep it within the required range as defined by the governed
gridnode spork SHARD GROUP REORGANIZE PERIOD INTERVAL.

• SHARD GROUP SIZE — Defines the preferred size of shard groups
on the network. While the spork value sets the preferred size of shard
groups, the network does not guarantee that a given shard group is of the
requested size at any given time.
0 15 63

size reserved

If the size is set to a value outside the allowed interval, the value is clamped
accordingly to keep it within the required range as defined by the governed
gridnode spork SHARD GROUP SIZE INTERVAL.
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• SHARD GROUP PARITY WEIGHT — Defines the weight modi-
fier for the parity calculation in the striping algorithm as defined by figure
5. The resulting calculation is hard-coded to be clamped between 0.1 and
0.3, meaning this unmanaged gridnode spork lacks any managed spork(s)
controlling it.

0 31 63

weight reserved

2.1.3 Gridnode spork consensus

While ungoverned gridnodes sporks can be modified freely by The Unigrid Foun-
dation, the governed gridnode sporks have to be accepted by the network. By
default, if a gridnode does not reject the proposal to change a value, it will au-
tomatically accept it. Whenever a governed gridnode spork is modified by the
foundation, the network collects VOTE blocks (6.3.5) and counts the number
of rejections passed from gridnodes. The new value is then either accepted or
rejected by the network based on the outcome.

2.2 Dynamic collateral adjustment

The collateral is the minimal amount of Unigrid tokens required to deploy a
gridnode on the network. A gridnode and its collateral is deployed to the network
by registering a public gridnode key and associating it with a transaction ID on
the network. This is similar to how traditional masternodes are implemented
[8].

In order to facilitate organic growth, the Unigrid network employs a dynamic
collateral adjustment. This means that the minimum collateral needed for a
gridnode decreases with the growth of the network and continuous addition of
new gridnodes. The network will always accept larger amounts - operators are
therefore never forced to reorganize their nodes on each level-change;{

c1 = 3000

cn =
⌊
cn−1 − cn−1 × 0.025 × log c

(5−0.1×n)∨1
n−1

⌉ }

The calculation runs for every additional 500 gridnodes added to the network.
Once the collateral level has progressed, it will never return to a previous level.
Using the above recursive function we can calculate the required collateral at
various adoption levels on the network;

c1 = 3000
c10 ≈ 718 (5 000 gridnodes)
c30 ≈ 138 (15 000 gridnodes)
c50 ≈ 80 (25 000 gridnodes)
c100 ≈ 33 (50 000 gridnodes)

2.3 Scoring and rewards

The gridnode rewards on the Unigrid network retain the original reward struc-
ture originating from new block generation, where the calculation for the win-
ning node uses a pseudo-random deterministic algorithm similar to the one
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described in the original Darkcoin specifications [8]. This retains a flat and
evenly distributed reward system for all the gridnodes on the network.

As a complement, gridnodes on the Unigrid network also receive rewards
based on the services they provide. The nodes on the network are required to
provide services such as bandwidth, domain name registrations, compute cycles
and storage space. Each gridnode is scored by individual wallets and daemons
based on link speed, responsiveness, storage space and compute capacity.

2.3.1 Bandwidth scoring

Bandwidth scoring is based on link responsiveness and the ability to rapidly
handle data transfers. A more responsive and faster uplink will result in the
gridnode receiving a higher score for the provided service;

sbr = 100 ×
1

log tms

sbs =
b2

ts

1024

The score calculation independently keeps track of responsiveness and speed,
where sbr is the calculated responsiveness score and sbs is the calculated speed
score. The time in milliseconds to receive a response to a request is denoted by
tms. The number of transfered bytes is denoted by b with the time taken for a
transfer in seconds denoted by ts.

2.3.2 Compute scoring

Peers calculate the compute performance by comparing gridnodes against mem-
bers of the same shard group. Every other time a shard group receives a compute
block it will either assign the block to the highest scoring gridnode or randomly
send the block to three unique members of the shard group. If sent to multiple
members, each gridnode receives a score for their attempt;

sa
C
, sa

G
=

 1
ta

tb+tc
2

2

This calculation is repeated for each of the three selected gridnodes and ensures
a fair distribution of work, where the faster nodes are given a better score and
higher resulting priority. The time in milliseconds to complete a compute block
for each node is denoted by ta, tb and tc. The resulting score sa is the score for
the gridnode that took ta milliseconds to complete the block. Every completed
compute block type (CPU or GPU) is separately calculated as denoted by sa

C

and sa
G

.

2.3.3 Score deduction

Whenever a gridnode is assigned work, the score of that gridnode is decreased
by the total score of that work, as calculated and described in section 2.3. This
results in a shard group that constantly changes and reorders its member nodes
as work is sent into the shard group by nodes consuming their service.
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2.3.4 Scoring consensus and penalties

When a shard group receives work from a node, it is processed, executed or gen-
erally handled by a selected gridnode with the highest score. However, another
gridnode will randomly re-send incoming work and calculate an intermediate
score. This extra step is randomly done to prevent tampering and manipu-
lation of the scoring algorithm. A node reporting a score that, as measured
by the gridnode is obviously manipulated will receive a misbehaviour score. If
the offences continue, the node will collect enough misbehaviour points to be
banned on the network.

3 Dynamic rewards and exhaustion

The Unigrid network uses a naive approach to adjust the rewards that gridnodes
receive when they perform work for the network - allowing the network to demo-
cratically adjust the reward structure. The network does not allow gridnodes
to control how much they want to get rewarded for their services. Instead, the
nodes collectively adjusts rewards based on the amount of available resources
on the network and the current minting rate in new blocks.
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Figure 1: Describes how the exhaustion level on a gridnode influences the reward
modifier that the network and the nodes use as a baseline for its reward decisions.

Resource exhaustion is monitored by each gridnode, with compute cycles, stor-
age space and communication speed tracked separately by the node and the
network. The nodes on the network choose how to distribute work based on the
scoring algorithm, as covered previously and by keeping track of this exhaustion.
When the exhaustion on a node increases, the rewards received increase with it.
However, at the same time, exhausting resources eventually lowers the score -
because the node will be unable to accept additional work and slow down as its
resource exhaustion increases. This creates a constant balancing act between
the scoring and the exhaustion on the node.
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Regardless of the type of resource, the relation between resource exhaustion and
the reward modifier can be described by the function;

0 < y < 1, f(y) = (y3 + 1) × 0.5

Where 0 < y < 1 represents the exhaustion level between zero and 100 percent,
as defined by the decimal number y.

3.1 Reward consensus and penalties

If a gridnode requests a reward that disagrees with the way that rewards are cal-
culated and weighted according to scoring and exhaustion levels, the node that
requested the work that is currently being processed has the right to temporar-
ily ban that gridnode from its list of work candidates. A gridnode has the same
right if it receives an incorrect reward for a submitted work from a node. If an
incorrect reward amount submitted to one of the transaction blockchains - the
rest of the network will also penalize a node. Initially it will just add a misbe-
haviour score, similar to how nodes are governed on a Bitcoin-based blockchain.
However, if a node keeps abusing the network and the reward consensus, it will
eventually get banned with a substantial ban time and the IP address of that
specific node will not be allowed to participate on the network during the ban
time.

4 Domain registry

The Unigrid network contains an internal domain registry that allows users to
associate an address on the network with an easy to read domain name. While
the addresses on the Unigrid network are typical 256 bit public keys represented
with 36 byte long PKH identifiers, the domain name association allows people
to easily send Unigrid tokens to an easily identifiable address. It makes alot of
sense to be able to send tokens to an address such as somecompany.com rather
than;

03cfb2a8ab7698f4955369f1ce46d918b64c50fda81c2bbabbee0163ec05e80d62 or
HV dpXj25t7gPV dmxBC5kxbv9hojTncFg6P

These represent the public key and wallet address of the domain. The associa-
tion of the domain name with the public key is stored in the address tree ledger,
as described in section 5.

The domains are handled by the gridnodes of the network. Each time a
domain name is registered or renewed, a small reward is given to the gridnode
handling the request. Domain registrations are stored in one of the chains on
the network, using a DNS block as described in section 6.3.2.

5 Address tree ledger

Much like the node structure of a file system, the address ledger is a recursive
tree chain with similar characteristics - but with a checksum component added
to verify the network integrity of the ledger. It helps the gridnodes on the
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network to keep track of where in the topology different resources can be found
and how many there are. When a hash is generated to checksum a node, the
hashes of its siblings is included in the calculation. Thus, the tree structure
will rehash nodes up to where a change occurs. This also allows the network
to traverse the ledger in order to collect information about the network and its
resources. The ledger is a live view of the network in its current state.

As the network grows, this data structure grows with it. Its design allows the
ledger to be stored mostly on-disk with the segmentation allowing the gridnodes
to do rapid lookups into the disk database. This data structure was chosen to
avoid to have to keep it in-memory, as the data set will become very big when
the network adopts.

Using the address tree ledger, transaction explorers, block explorers and
monitoring software can be developed to keep track of and display the continuous
state of the network.

To identify nodes on the network, the address tree ledger will store SHA3-512
hashes rather than IP addresses. When a node is referenced, a propagating query
is sent to the network, asking for information about the node. The network will
never readily reveal or store the physical IP address in the ledger or anywhere
else.
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Figure 2: A simplified visualization of the bottom of a subset of the address
tree ledger - displaying the leafs of the data structure. On a deployed network,
the topology would be much larger and have a longer node depth, traversing
full SHA3-512 address hashes. Each node in the ledger holds a data component
about the current subset of the ledger. The ledger can store information about
block references, shard groups and nodes on the network. It will, however, never
store the actual block data - only the information needed to find said block data.

The domain registry, as discussed in section 4, is also stored in the address tree
ledger.
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6 Segmented blockchain and shard groups

As previous experience and research demonstrates, the classic network topology
used by the majority of blockchain networks does not scale effectively, with in-
creased traffic and transaction volumes degrading the speed and responsiveness
of the system [21]. A secondary problem is the global storage space required
when each node on the network keeps a local copy of the complete blockchain;

Cryptocurrency Blockchain size Block count
Bitcoin 269.86 GB 586,585
Etherum 283.24 GB 8,202,676
Litecoin 25.24 GB 1,672,147

Table 1: Blockchain statistics from some major cryptocurrencies. Statistics
taken from BitInfoCharts [2] on 2019-07-22.

The Unigrid network will automatically group gridnodes with similar storage
space into the same shard group, which governs exactly one unique blockchain.
A gridnode with a lot of storage space can also be placed into multiple shard
groups to maximize resource use of the network. In this way, the Unigrid net-
work employs a segmented blockchain design, splitting the network into smaller
blockchains only storing a portion of the total data currently on the network.
This allows the Unigrid network to scale indefinitely without any degradation
to the quality of the service.

Shard Group A

Shard Group BShard Group C

A6A5 A4A3

B3 B2C3

A2A1

B6B5B4 B1C6C5C4 C2 C1

Daemon 1

Daemon 2

Daemon 3

Figure 3: An example graph of the network topology. A deployed network
would contain a higher number of gridnodes, daemons and shard groups than
the graph portrays. Each shard group holds exactly one unique blockchain.
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6.1 Fault-tolerance with striping and redundancy

The striping and redundancy employed on the Unigrid network is based on
the algorithm described in the original description of the RAID system [7, 16].
The Unigrid network takes this idea and adapts it for a network based storage
solution. Unlike a traditional RAID array where each storage unit is a physical
storage disk, each storage unit in the striped array on the Unigrid network is one
individual blockchain controlled by a dedicated shard group. Whenever a wallet
or daemon needs to store data on the network, they split that data into shards,
striping them across a number of shard groups on the network. Parity blocks are
used to checksum the data and verify its integrity. As described in the archive
of Igor Otrovsky, solving the issue of constructing a parity algorithm that can
support an arbitrary number of parity blocks is a relatively trivial problem that
can be solved using galois fields and finite field arithmetic [13] [31].
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Figure 4: A visualization of data being stored on the Unigrid network. This
example is sharding data over five blockchains, of which two are used for parity
and error correction. In the example, parity blocks are denoted within dashed
cylinders with p and q, while actual data is numbered 1-3.

The example, as described in figure 4, uses two parity blocks during storage. If
the network needs to store 3GB of data, it would consume an additional 2GB just
for the parity data. This would result in an increased resource use of 2

3 × 100 =
66.67%. However, if we were to store 12GB and keep to the same number of
parity blocks, the additional space used would only be 2

12× = 16.67%. Of course,
having fewer parity shard groups in relation to ones that store the actual data
increases the risk of data loss. Therefore, the network implements the gridnode
spork SHARD GROUP PARITY WEIGHT - allowing The Unigrid Foundation
to control the properties and percentage of storage that should be used for parity
and error correction. Because the Unigrid network stores data this way, it is
able to reorganize the storage space and remove or add additional shard groups
to the collection, much like a traditional RAID array would with physical drives.

If we consider the aforementioned points, using the same percentage of parity
blocks for differently sized shard groups would not be optimal and would waste
a lot of unnecessary space when using fewer shard groups. To solve this, we use
a sub logarithmic or exponential function that weights the parity percentage
against the shard group size.
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Figure 5: Describes how the SHARD GROUP PARITY WEIGHT gridnode
spork affects the behavior when the network selects how many blockchains (or
shards) should be used for parity data.

An equation with an exponential component is used to control how much the
selected amount of parity should diminish. This fall-off can be described with
the function;

f(n) = min(max(0.3 −
x2

5000
× w, 0.1), 0.3)

Where w defines the weight of the fall-off and n defines the number of shard-
groups. The exponential component creates an increasing fall-off as the number
of shard groups increases. The result, 0.10 < f(x) < 0.30 represents the per-
centage of parity data between 10 and 30 percent, as defined by the resulting
decimal number.

6.2 Block generation and consensus

The original implementation of the Unigrid blockchain is based around the PIVX
cryptocurrency [17] code base with some custom changes implemented on top.
This original implementation is an active and running blockchain that will tran-
sition into the new network and to a Java foundation with a cleaner implementa-
tion. The original Proof-of-Stake [22] consensus mechanism and original hashing
algorithm for block hashing is kept in place.

This blockchain implementation moves to a new sharded implementation
that does not keep the history of the chain indefinitely intact. With the help
of the gridnodes on the network, the network will reorganize and compact the
chain, only preserving a certain history of data, keeping track of balances in
individual addresses. The current transaction blockchain will also be split up
into smaller side chains. Using the address ledger, the network will still be able
to quickly find which address or transaction belongs to a specific address. This
is done to also allow the transaction ledger to scale in the same manner as the
side chains that hold storage and compute blocks.

13



When the network looks for confirmation on a gridnode reward, the transaction
ledger is referenced to check if there is coverage for the work that specific block
contains.

6.3 Blocks and gridnode selection

To increase the flexibility of the blockchains on the network, a more naive ap-
proach to the block layout is taken, focusing on a more general structure. Even
if Unigrid can support transactions, the design does not force transactions or
transactional information onto the blocks. In fact, the block template of the
network is completely transactionless. Instead of data storage being an af-
terthought, which is the case with most current blockchain solutions, the net-
work focuses on a more agnostic approach that improves the ability to store
other types of data in the blocks.

A number of block types will be required to accomplish the goals of the
Unigrid network. All the blocks on the network, with the exception of the
blocks in the in-memory FIFO blockchains described in section 7.1 uses the
block template and blocks described in the current section below. This section
is an every changing draft that describes the blockchains on the protocol and
storage levels. These blocks are continuously changing.

6.3.1 Block template
0 15 31 63 95 127

0xdecea5ed block size version reserved

timestamp reserved

previous block hash (SHA3-512)

data portion hash (SHA3-512)

type reserved

block-type specific data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh


data portion

The blocks stored in the compute chains and storage chains in the network have
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the above block template, with the block-type specific data filled in to describe
the different block types on the network.

6.3.2 DNS
0 23 31

owner reserved

validity timestamp

domain name data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

A block type that registers and keeps a domain registration on the network.

6.3.3 SCORE
0 23 31

owner reserved

type reserved

scoring timestamp (might be removed)

scoring data that differs depending on type
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

A block type that handles scoring on the network. These blocks are primarily
used for consensus and to prevent manipulation to the scoring system on the
network. The 3-bit type value is a complement to the type field in the block tem-
plate. It tells the network if the block is scoring storage, bandwidth, compute
cycles, or some other scoring type.
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6.3.4 COMPUTE
0 23 31

owner reserved

type p reserved

compute data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Describes a compute block on the network. This block type is used to send work
to the network. The p flag tells the network if this is a persistent program or
not. A persistent program can detach and run on its own - without any control
from the node that deployed it.

6.3.5 STORAGE, VOTE
0 23 31

owner reserved

data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Describes storage and vote blocks on the network. In the case of the storage
type, lookups are handled via the block hashes and file fingerprints sent by
the accessing party. The vote blocks are used to handle voting on governance
proposals and gridnode spork changes.

6.4 Delta encoding and shard compression

To further optimize network communication and decrease bandwidth utilization,
the Unigrid network will implement shard compression based on LZ4m [20]. This
compression is done to the data portion of the block, as described in section 6.3
and happens before transmission over the network and during pre-assembly of
the block. Nodes will only attempt to compress data blobs of sufficient size and
will not use the compressed version in the block if the compression ratio is not
sufficient.

Whenever compression is not an alternative or if the data has not changed
much from a previous version, the network also implements delta encoding as
defined by the bsdiff tool [5]. This allows nodes to utilize diffs (data with only
the differences). These diffs are sent over the network as data blobs whenever
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data is very similar to a previous data blob in a previously sent block that can
be referenced.

7 Anonymous communication

To provide a completely anonymous network that can replace the TOR network
and fix the security problems of that network, the Unigrid network implements
an anonymous communication layer that allows existing applications to connect
to the network and communicate via it. Nodes can use the Unigrid network
to access the regular Internet via the gridnodes on the network. Government
agencies and hackers have learned how to bypass and break the security of the
TOR network [12]. While they are not able to take it down, they are able
to break its security by deploying enough nodes on the network until they gain
control over entire communication queues. If they achieve this, they can monitor
all the data sent over that specific node queue.

The packets sent on the Unigrid network are always encrypted. Instead of
a single flat queue, the Unigrid network implements a more secure approach,
where there is no communication queue that can be compromised. Security
is achieved by encryption, redundancy and increasing the search space for the
attacker. To increase the search space, the Unigrid network relies on its shard
groups, rather than a flat or recursive queue. When sending traffic between
the shard group and a communicating node, the network can set up additional
routes between shard groups in order to further obfuscate the communication
path.

Shard groups

Internet

Figure 6: When a packet is sent from a node to the network, the receiving shard
group can either set up a direct route to the Internet, or set up a route with an
extra hop to some other external shard group. This adds an additional level of
obfuscation to the communication.

To allow currently developed applications to join the network and promote adop-
tion, the Unigrid daemon exposes a SOCKS5 proxy that allows the operating
system and existing applications to connect to the network and communicate
via it. Packets are routed through this SOCKS5 proxy and translated into com-
munication packets that re-route communication onto the Unigrid network and
into one of its shard groups.

17



7.1 An encrypted in-memory FIFO blockchain

To achieve a communication layer capable of high speeds with a reasonable
latency penalty, the Unigrid network utilizes an in-memory FIFO blockchain.
Blockchains in general have the ability to checksum data which allows for con-
sensus and error correction perfect for real-time communication queues. Fur-
thermore, a hashing function has been chosen where speed is preferred over
collision resistance. Considering how fast the communication chains on the
network need to progress, the choice of a slightly more naive hashing function
should not cause any issues. Using the FNVJ64 hash function we can create a
very rapidly moving blockchain.

SHA1

CRC32

Murmur3a

Murmur3f

FNVJ64

196

400

2,130

3,752

5,879

Performance in megabytes per second (MB/s)

Figure 7: More naive hashing functions such as FNVJ64 offer a distinct perfor-
mance advantage over more collision-resistant hash functions such as SHA-1. A
rough estimation tells us that the performance increase is nearly 3000% when
compared to SHA-1, which can only achieve around 200 MB/s [10] under the
same hardware, in this specific example.

The gridnodes on the network use the aforementioned hashing function to create
a rapidly moving FIFO blockchain. When a gridnode handles the communica-
tion for a node - that data is placed into the FIFO blockchain. Essentially,
this means that each shard group on the network manages one or many small
communication FIFO blockchains.

A communicating node will be grouped together with other nodes that are
able to handle a similar bandwidth. When connecting, a node asks the network
about shard group information - asking which shard groups might be willing to
accept new communicating nodes. The node then connects to a given shard
group and starts accepting data from a FIFO blockchain. Whenever the node
wants to access the public Internet, it populates the FIFO blockchain with a
communication packet containing a fingerprint. This packet and the commu-
nication session is picked up by a gridnode inside the shard group. When the
gridnode answers, it answers by populating the FIFO blockchain with an an-
swering packet containing the same fingerprint. Using this scheme, the two
communicating nodes are able to find each other inside the Unigrid network -
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without knowing about each others physical location.
The in-memory FIFO blockchain works like a traditional FIFO queue but

with the difference that each entry is hashed, while also containing the hash to
the previous entry - just like a blockchain;

A B C D E F

Figure 8: A very simplified subset of an in-memory FIFO blockchain queue.
Packets are handled by the cluster in the order they are received into the queue.
The queue is a ”rolling” data structure that is flexible in size. Meaning that
it can grow in size and queue up traffic more aggressively when the cluster
can’t keep up. Packets enter the queue on the left and exit it on the right,
continuously updating the tail and head of the queue.

8 Computing and storing data

The Unigrid daemon and network aims for a sandboxed interpreter that takes
advantage of The BNF Converter [4], developed at the Centre for Language
Technology at Chalmers University of Technology and The University of Gothen-
burg. The tool allows developers to define a language grammar in Backus-Naur-
form, which is an extension based on the original paper by J.W Backus [15].
The converter generates a code template based on the language grammar pro-
vided and allows for the ability to rapidly write AST parsers and add logic for
the grammar. In addition to this, the Unigrid daemon will parse binary web
assembly.

These components should implement most of the WebAssembly specifica-
tion [29]. Furthermore, the interpreter handles common operating system calls
such as file operations and console operations and translate them to run on the
Unigrid network. For example, a file operation writing file data, will instead
redirect that operation onto the Unigrid network. Some time ago, the official
threads and atomics API [28] was also completed and came out of alpha and
beta status. In addition to this, the Unigrid network uses WebGPU for compute
work that is intended to target GPU:s. The first public draft of WebGPU was
recently published by W3C [30] and will allow the network to support this kind
of workload as well - creating a truly universal low level solution.

Essentially, this creates a translation layer that, with a minimum amount
of changes, will allow for the compilation and execution of a big portion of the
current software base that exists. This eases adoption and makes it easier for
developers and applications to transition to the Unigrid network.
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Java Virtual Machine / GraalVM

Sandbox

Interpreter

Compute chain

Figure 9: To protect the host gridnode and achieve a high level of security and
stability, the interpreter is implemented in Java and runs inside a sandboxed
virtual machine. This means that most operating system access is limited or
completely disabled in order to protect the underlying operating system envi-
ronment of the gridnode.

9 Transaction data and duality consensus

The original Unigrid implementation for handling transactions is based on Bit-
coin and the work of Satoshi Nakamoto [19]. With this design and consensus
method, the time and effort needed to synchronize chain data rises as the size
of the underlying blockchain increases. While it makes the data structure sim-
pler and consensus easier to achieve, the design is rigid and wasteful, forcing
participants to synchronize a lot of data that they have no direct relationship
to. To address this issue, the Unigrid network will take advantage of its address
tree ledger, as described in section 6.4, to achieve a faster synchronization and a
more segmented consensus method. Instead of storing every single transaction
in a central ledger, the Unigrid network will, at the earliest convenience, sepa-
rate this information into smaller blockchains where each wallet address tracked
on the network governs exactly one blockchain.

To achieve consensus and data integrity a duality consensus method is em-
ployed. Whenever an address sends a transaction to another address, the net-
work verifies that the two blockchains involved are in agreement and that all the
nodes taking part in the consensus also agree. Rather than having to update
and rely on an entire central ledger, two smaller blockchains can be updated,
improving data sharing and synchronization times dramatically.

10 Keeping the network updated

The Unigrid network will continuously evolve, with frequent changes and new
releases of the software for the network. Therefore, the traditional approach with
members of the network manually updating their wallets and daemons is not
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feasible. It would create an additional turnaround time, where the foundation
would have to wait long periods of time for the community to update before a
new feature was enabled. Additionally, if the Unigrid network is deployed on
hardware devices, such as routers, these need to be able to update on their own,
without user-intervention.

The solution to this problem is to make the daemons and wallets react and
check for new updates of the software. The Unigrid Foundation will control
a private release key. Whenever a new release is created and pushed to the
network, the participants (or the current nodes) will try to sign this key with
the public key provided with the software. If the key can be signed, they (the
nodes) can assume the release is officially endorsed by The Unigrid Foundation.

Next, the gridnodes on the network will have exactly one week to reject the
release. If a gridnode does not reject a release, the network will assume that the
node in question accepts the new version. If a majority of the network accepts
the new version, it will be applied by the network and all nodes on the network
will update.
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11 Future work

This protocol and the algorithms discussed will evolve and change continuously
as the Unigrid network, its protocol and related blockchains evolve and mature.
Additional gridnode sporks will be continuously defined, allowing the foundation
and the community to manage and control the network. For example, a gridnode
spork with a value of (1 > v > −1) is being considered that would allow The
Unigrid Foundation to quickly re-weight the planned reward implementation
described in section 3, if a situation arose where the network was unable to keep
up with price changes of the underlying token.

The TOR network generates additional traffic, or noise, from the creation
of its communication queues. Similarly, the Unigrid network will also generate
extra traffic when clusters of nodes share and synchronize the encrypted in-
memory FIFO blockchains. This property is what creates the obfuscation and
makes the traffic untraceable. Future considerations and work will research
how this particular way of creating anonymization can be optimized and how
the networks should weight and organize participants and nodes in order to
optimize network performance.

The current description of the address tree ledger is very general and only
describes how the data structure will work - not how the data will be stored or
indexed. The solution will require further research from The Unigrid Founda-
tion. Developing a custom backend might be the only way to get the desired
performance. At the same time, finding a usable third-party solution that gives
acceptable performance could save some development time.

While the general structure and idea is the same, the dynamic gridnode col-
lateral adjustment, as described in section 2.2, needs to be adjusted to account
for any changes to the circulating token supply on the network. If the deploy-
ment stalls, The Unigrid Foundation can, based on the decision of the board,
release additional tokens onto the market from its locked supply in order to fuel
further adoption.

Supporting both binary web assembly and its text format might not be the
most optimal solution at an early stage. More investigation is needed. An
alternative could be to just implement the binary support initially.

Grouping of gridnodes and how the selection of members should work needs
to be investigated further. Most likely, we need an already deployed network to
do live tests on in order to find optimal grouping strategies for shard groups.

This work broadly describes select implementation details of the underlying
network and how the foundation plans to implement some of the core func-
tionality and algorithms. The specification and this paper will be divided into
separate publications as the network develops and more detail is needed.

As defined by the statutes [26] and charter [25] of the Unigrid Foundation
- if any solution described in this paper or the current protocol is deemed in-
efficient or lacking in any way for an efficient operation of the network - the
Unigrid Foundation and its developers will invest the necessary time, research
and development needed to improve the network protocol and make the neces-
sary changes to improve said solution or protocol.
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12 Conclusion

We have clarified a solution to the deteriorating trend on the current net-
work of the Internet and how it is possible for the increasing centralization
and surveillance to be addressed using a multi-blockchain solution with an ad-
dress tree ledger. The address ledger is a completely different approach to
previous blockchain solutions and allows the network to quickly locate which
specific blockchains different network nodes are part of and identify where data
is located.

We have also shown how the Unigrid network is self-governing and how
grouping and scoring of nodes is achieved on the network. The scoring, grouping
and sharding of the network allows the topology of the network to adapt and
get around areas of congestion. It has also been described how the sharding and
grouping adds fault-tolerance and redundancy to data stored on the network.

The protocol solves the issue of an ever growing blockchain eventually reach-
ing a size where it takes a very big amount of data to store or where it becomes
nearly unusable, because the traversal of the data structures takes a lot of com-
putational time. The original Bitcoin blockchain and the vast majority of other
blockchain projects and cryptocurrencies have this bottleneck. The Unigrid
network describes a solution that allows the network and its data to scale in-
definitely. The reorganize functionality of the chains and the way that data is
striped allows the data stored on the network to grow and even shrink in size.

Furthermore, we have demonstrated how the network runs distributed ap-
plications and deploys services that can never be interrupted by instability or
outages, describing how the sandboxed translation layer on the gridnodes in-
terprets web assembly and web GPU into something that it can execute and
run.

We have shown how the nodes on the network will govern themselves and
update to new versions of the software when released by The Unigrid Founda-
tion. We also explained why updates to the nodes need to be automated and
how it benefits the network in the long term.

The work in this paper collects many proven principles and solutions and
adapts them for use with a decentralized and distributed network solution.
Some, like web assembly and web GPU, have recently been developed, while
others have been used and proven in industry since many years back. Using
the work in this paper, a robust and anonymous network capable of scaling in-
definitely and handling enormous amounts of computation and storage will be
developed.
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13 License

This paper is a continuous draft and should not be taken as an absolute descrip-
tion of the future state and implementation of the network. Rather, this paper
will evolve together with the evolution of the network and the protocol. To pre-
serve the historical work of the foundation, all public versions and the release
history of this paper and its specifications will be published on the website of
The Unigrid Foundation [27].

Intermediate development releases should be called ‘draft versions‘. When
The Unigrid Foundation makes a formal and public release implementing the
functionality as described in this paper, the paper should, together with that
release of the network, be labelled as a ‘final version‘.

The algorithms and descriptions covered herein may not be used to imple-
ment a separate implementation, network or product outside the oversight of
The Unigrid Foundation. If any solution, product or network uses the algo-
rithms or descriptions as described in this paper, in their own implementations,
without the explicit permission of The Unigrid Foundation, the foundation has
the right to seek compensation. As supported by the statutes of The Unigrid
Foundation [26], the foundation does this to protect the integrity and stability of
the Unigrid network, limiting network fragmentation and promoting the growth
of an anonymous decentralized, global Internet that anyone can use and join.

In no event will The Unigrid Foundation be liable for any damages, including
general, special, incidental or consequential damages arising out of the use,
distribution or publication of this paper.

24



References

[1] Andy Klein, Backblaze, ”Hard Drive Cost Per Gigabyte”,
www.backblaze.com, 2017.

[2] BitInfoCharts, ”Cryptocurrency statistics, Blockchain Size”, bitin-
focharts.com, 2022.

[3] Cale Weissman, Fast Company, ”How Facebook Blew It”,
www.fastcompany.com, 2018.

[4] Centre for Language Technology, Chalmers University of Tech-
nology and University of Gothenburg, ”The BNF Converter”,
bnfc.digitalgrammars.com 2022.

[5] Colin Percival, Wadham College, University of Oxford, ”Matching with
Mismatches and Assorted Applications”, www.daemonology.net, 2006.

[6] Dash Project, ”Dash Developer Reference: Spork”, dash-docs.github.io,
2017-2019.

[7] David A Patterson & Garth Gibson & Randy H Katz, University of Cal-
ifornia, Berkeley, ”A Case for Redundant Arrays of Inexpensive Disks
(RAID)”, www.cs.cmu.edu, 1988.

[8] Evan Duffield & Kyle Hagan, The Darkcoin Developers, ”Darkcoin: Peer-
toPeer CryptoCurrency with Anonymous Blockchain Transactions and an
Improved ProofofWork System”, dashpay.atlassian.net, 2014.

[9] Federal Information Processing Standards, ”SHA-3 STANDARD:
PERMUTATION-BASED HASH AND EXTENDABLE OUTPUT
FUNCTIONS”, nvlpubs.nist.gov, 2017.

[10] Greenrobot Open Source Libraries, ”Comparison of hash functions and
performance benchmarks”, greenrobot.org, 2022.

[11] Good Audience, ”53 companies accepting cryptocurrency”,
blog.goodaudience.com, 2018.

[12] The Guardian, ”NSA and GCHQ target Tor network that protects
anonymity of web users”, www.theguardian.com, 2013.

[13] Igor Ostrovsky, ”How RAID-6 dual parity calculation works” igoro.com,
2014.

[14] Japanese Financial Services Agency, ”About result of public comment for
’government orders to revise a part of the banking law enforcement order
(draft)’”, www.fsa.go.jp, 2017.

[15] J. W. Backus, ”The Syntax and Semantics of the Proposed Interna-
tional Algebraic Language of the Zurich ACM-GAMM Conference. Pro-
ceedings of the International Conference on Information Processing”
www.softwarepreservation.org, 1959.

25

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte
https://bitinfocharts.com
https://bitinfocharts.com
https://www.fastcompany.com/40550423/how-facebook-blew-it
https://bnfc.digitalgrammars.com/
http://www.daemonology.net/papers/thesis.pdf
https://dash-docs.github.io/en/developer-reference%23spork
https://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf
https://dashpay.atlassian.net/wiki/download/attachments/132120878/Darkcoin%20Whitepaper.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://greenrobot.org/essentials/features/performant-hash-functions-for-java/comparison-of-hash-functions
https://blog.goodaudience.com/companies-accepting-cryptocurrency-4e224d72e25b
https://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://igoro.com/archive/how-raid-6-dual-parity-calculation-works/
https://www.fsa.go.jp/news/28/ginkou/20170324-1.html
http://www.softwarepreservation.org/projects/ALGOL/paper/Backus-Syntax_and_Semantics_of_Proposed_IAL.pdf


[16] Peter M. Chen & David A Patterson, University of Califor-
nia, Berkeley, ”Maximizing Performance in a Striped Disk Array”,
web.eecs.umich.edu, 1990.

[17] The PIVX Team, ”PIVX Core integration/staging repository”,
www.github.com, 2022.

[18] Rajeev Syal & Denis Campbell, The Guardian, ”NHS data loss scan-
dal deepens with further 162,000 files missing”, www.theguardian.com,
2017.

[19] Satoshi Nakamoto, ”Bitcoin: A Peer-to-Peer Electronic Cash System”,
www.bitcoin.org, 2008.

[20] Se-Jun Kwon, Sang-Hoon Kim, Hyeong-Jun Kim, and Jin-Soo Kim, Col-
lege of Information and Communication Engineering, Sungkyunkwan Uni-
versity, ”LZ4m: A Fast Compression Algorithm for In-Memory Data”,
csl.skku.edu, 2017.

[21] Songze Li, Mingchao Yu, A. Salman Avestimehr, Sreeram Kannan &
Pramod Viswanath, University of Southern California, University of
Washington & University of Illinois at Urbana-Champaign, ”PolyShard:
Coded Sharding Achieves Linearly Scaling Efficiency and Security Simul-
taneously”, arxiv.org, 2018.

[22] Sothearath Seang, Dominique Torre, ”Proof of Work and Proof of Stake
consensus protocols: a blockchain application for local complementary cur-
rencies”, gdre-scpo-aix.sciencesconf.org, 2018.

[23] The Swedish Riksbank, ”E-krona”, www.riksbank.se, 2019.

[24] The Tor Project, Inc, Defend yourself against tracking and surveillance.
Circumvent censorship, www.torproject.org, 2022.

[25] The Unigrid Foundation, ”The Unigrid Foundation Charter”,
www.unigrid.org, 2022.

[26] The Unigrid Foundation, ”The Unigrid Foundation Statutes”,
www.unigrid.org, 2022.

[27] The Unigrid Foundation, ”The Unigrid Foundation Website & Project
Page”, www.unigrid.org, 2022.

[28] WebAssembly Community Group, ”Threads Proposal for WebAssembly”,
github.com, 2022.

[29] WebAssembly Community Group, ”WebAssembly Specification”, we-
bassembly.github.io, 2022.

[30] W3C, ”WebGPU, W3C First Public Working Draft, 18 May 2021”,
www.w3.org, 2021.

[31] Wikipedia, ”Finite field arithmetic”, en.wikipedia.org, 2022.

[32] Wikipedia, ”History of Bitcoin”, en.wikipedia.org, 2022.

[33] Wikipedia, ”History of the Internet”, en.wikipedia.org, 2022.

26

http://web.eecs.umich.edu/~pmchen/Rio/papers/chen90_1.pdf
https://github.com/PIVX-Project/PIVX
https://www.theguardian.com/society/2017/oct/16/nhs-data-loss-scandal-deepens-with-162000-more-files-missing
http://www.bitcoin.org
http://csl.skku.edu/papers/icce17.pdf
https://arxiv.org/pdf/1809.10361.pdf
https://gdre-scpo-aix.sciencesconf.org/195470/document
https://www.riksbank.se/en-gb/payments--cash/e-krona
https://www.torproject.org
https://www.unigrid.org/link-not-yet-available
https://www.unigrid.org/link-not-yet-available
https://www.unigrid.org
https://github.com/WebAssembly/threads
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://www.w3.org/TR/2021/WD-webgpu-20210518/
https://en.wikipedia.org/wiki/Finite_field_arithmetic
https://en.wikipedia.org/wiki/History_of_bitcoin
https://en.wikipedia.org/wiki/History_of_the_Internet


Glossary

fermi Smallest denomination of the Unigrid cryptocurrency, where one fermi
is 0.00000001 units. 2

gridnode Specialized service node providing the network with storage space,
communication channels and compute cycles. 2–14, 16–18, 20–23, 27

shard group A collection of gridnodes servicing a unique blockchain to the
network where wallets or daemons can store data. A shard group typically
stores one shard, with other shards of the data being distributed onto other
shard groups. 7, 8, 11–13, 17, 18, 22

unit Base currency unit and biggest denomination of the Unigrid cryptocur-
rency. 2
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